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Concentrations of CO; and other greenhouse gases (GHGs) have been increasing dramatically
in earth’s atmosphere since the industrial revolution, and are expected to continue increasing
from ~385 ppmv today to more than 600 ppmv by the end of this century (IPCC, 2007).

Global surface temperatures are expected to rise between 1.1 to 5.4°C by 2100, depending on
how fast greenhouse gas concentrations increase. Precipitation dynamics are also predicted to
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change, although there is still considerable uncertainty in these projections. While some of the
details of these events are unclear, most agree climate change has already affected agro-
ecosystems worldwide, and will have even more profound effects as climate change accelerates
(Solomon et al., 2009). Important feedback exists between the atmosphere and the soil
(Heimann and Reichstein, 2008), and a clear understanding of how climate change and rising
atmospheric CO; might affect soil C sequestration and greenhouse gas exchange in agro-
ecosystems is urgently needed.

Our review will address the effects of warming and rising CO, on the GHG balance. Although
precipitation can have strong effects on C sequestration and greenhouse gas exchange in agro-
ecosystems, current projections about precipitation responses remain highly uncertain. Our
review will focus on manipulative field experiments in which researchers alter the environment
to evaluate ecosystem responses. These experiments include manipulations of atmospheric CO,
through Open Top Chambers (OTC), Free Air Carbon dioxide Enrichment (FACE), or Screen-
Aided CO,; Control (SACC), manipulations of temperature using heating cables (HC) or
infrared heaters (IRH), or a combination of atmospheric CO, and temperature. We assess
important mechanisms and identify critical knowledge gaps regarding the effects of elevated
CO; (eCO;) and warming on C sequestration and greenhouse gas exchange in agroecosystems.

METHODS

In our review we focused on manipulative field experiments, while we excluded growth
chamber and greenhouse studies, studies conducted in arctic and subarctic environments, and
studies conducted in systems with no direct agronomic benefit (e.g. forests). In most experi-
ments, CO, concentrations were manipulated above present-day ambient concentrations
(~375—385 ppmv) to enriched levels (470—720 ppmv). Temperature increases ranged
between 1 and 5°C above ambient, consistent with IPCC projections for the end of the

21st century (IPCC, 2007). We reviewed a total of 32 eCO, and 13 warming studies

(Tables 27.1 and 27.2).

The eCO, and warming effects on soil C, soil respiration, and N,O emission were separated
in N fertilized and non-N fertilized studies with the expectation that eCO; and warming
effects on these properties largely depend on soil N availability. For instance, in other meta-
analyses a significant increase in soil C under eCO; required N fertilization (Van Groenigen
et al.,, 2006; Hungate et al., 2009). We further separated eCO, and warming effects on CH,
exchange conducted in dry land sites (non-rice) where the net CHy efflux is predominantly
negative (i.e. net CH4 uptake in soils), and in rice paddy field studies where the net CH, efflux
is much larger and always positive (i.e. net CH4 production in soils). When other treatments
were included, eCO, and warming effects were averaged across those other treatments

(e.g. irrigation, ozone).

We calculated the effect of eCO, and warming on soil C as the absolute change in soil C (in
g Ckg ! soil) divided by the number of years of treatment. We used absolute changes rather
than relative changes because absolute changes provide more biogeochemical significance
(Hungate et al., 2009). The absolute changes were calculated for the shallowest soil depths
reported, which ranged between 0—5 and 0—26 cm among studies. The number of years of
treatment effects on soil C ranged between 2 and 10 years. We calculated the effect of CO, and
warming on soil respiration, N, O, and CH, flux rates as the absolute change in the average flux
rates measured during the growing season (in kgCha 'd™!, gNha 'd™!, andgCha'd™!
for CO,, N,O, and CHy, respectively). When flux rates were measured in multiple years, we
averaged the flux rates across years. All flux rates were measured using static chambers.

Because the effect of eCO, on soil C, soil respiration, N,O, and CH, flux rates were highly
variable among studies, we tested whether this variability could be explained by climate factors
or soil properties of the study site. For the climate factors we chose mean annual temperature
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(MAT) and mean annual precipitation (MAP) of the site where the studies were conducted and
for soil properties we chose %clay and pH. We chose these climate and soil factors because they
can have significant effects on plant growth and biological activity in the soil (Epstein et al.,
1997; Guo et al., 2006; Fierer et al., 2009) and therefore we expected that they could signifi-
cantly influence eCO, and warming effects on soil C and GHG flux rates among sites. These
parameters are also frequently reported in the literature. We used %clay when reported in the
study, but often only the textural class was reported. In that case we used the average %clay of
the two boundaries of the textural class according to the textural triangle. For instance, if it was
reported that the study was conducted in a sandy clay loam with a clay content between 20 and
35% according to the textural triangle, we designated that soil with the average clay content of
27.5%. We related CO; effects on soil C and GHG flux rates to each of MAT, MAP, %clay, and
pH using linear regression. With the linear regressions, we put more weight on studies that
were conducted over a longer time period, because we assumed that studies over longer time
periods provide more reliable data. We weighted the absolute rate of change in soil C by the
treatment length (in years) after which soil C was measured and weighted the absolute change
GHG flux rates by the duration of the measurements (in years; Wu et al., 2011). Some studies
were conducted at the same location and soil type, but in different years (e.g. the wheat,
sorghum, and cotton studies at Maricopa, AZ). In those cases eCO; effects and treatment
length/duration of measurements were averaged across the different studies conducted at
the same site. We only constructed relationships when there were data available for four or
more sites. All linear regressions were performed with JMP (version 8.0.1; SAS Institute, Cary,
NG, USA).

THE EFFECT OF eCO2 ON SOIL C

We found 27 studies (19 N fertilized and 8 non-N fertilized studies) where the effect of eCO,
on soil C was reported (Figure 27.1). In 74% of the studies (79% of the N fertilized and 63% of

o
©

N fertilized Non-N fertilized

o
o

o
IS

0.2

A soil C (g C kg'yr")

FIGURE 27.1
The rate of change in soil C in response to eCO, among different studies. Horizontal bold lines represent averaged values
for N fertilized and non-N fertilized studies.



the non-N fertilized studies) a positive effect of eCO, on soil C was found, although only in
a few occasions were these positive effects statistically significant (e.g. Williams et al., 2000;
Prior et al., 2004, 2005; Zhong et al., 2009). While the positive effects of CO, enrichment on
plant production are generally observed in the initial treatment year (Kimball et al., 2002),
detection of significant changes in soil C may take many years of CO, enrichment due to the
high amount of C present in soils and the relatively small amounts that accrue on an annual
basis (Conant and Paustian, 2002; Smith, 2004). On average soil C increased by
0.205gkg ' yr ! in the N fertilized studies and by 0.008 gkg ™! yr ! in the non-N fertilized
studies. If we assume that in all studies the soil had a bulk density of 1.3 gcm ™2 and that the
change in soil C occurred in the top 20 cm, this would correspond to an average rate of soil C
increase of 1460 and 57 gha~! d ! in the N fertilized and non-N fertilized studies, respectively.
A greater response in N fertilized studies was also found by Van Groenigen et al. (2006) in their
meta-analysis, where they included greenhouse and growth chamber studies, and non-
agronomic sites. Our results confirm the notion that soil C sequestration under eCOj is
generally constrained by the availability of N and that N fertilization enhances the capacity to
increase soil C under eCO; (Reich et al., 2006a; Van Groenigen et al., 2006).

Nitrogen fixation by legumes is often enhanced under eCO,, especially with the addition of
non-N nutrients (van Groenigen et al., 2006), and legume responses to CO; tend to be greater
than non-legumes under conditions of low soil N (van Kessel et al., 2006). Yet no strong
evidence was found of greater C sequestration under eCO5 in studies with legumes. Soil C only
slightly increased in plots of Trifolium repens (white clover) in the FACE experiment at
Eschikon, Switzerland, the most extensive evaluation yet of legume CO; responses in a field
setting (van Kessel et al., 2006), while soil C decreased under eCO, in a temperate pasture with
legumes in New Zealand (Ross et al., 2004).

Although on average soil C sequestration in response to eCO; was higher in N fertilized than
in non-N fertilized studies, within the N fertilized and non-N fertilized studies eCO, effects on
soil C showed large variation (Figure 27.1). For example, the most negative response to eCO,
was observed in an N fertilized study with a corn—soybean rotation in Illinois (Peralta and
Wander, 2008) and the most positive response was observed in an N fertilized study with

a sorghum—soybean rotation in Alabama (Prior et al., 2005). Both these extreme responses
were larger than any of the responses observed in the non-N fertilized studies. We tested
whether this variability in soil C response among sites could be explained by site differences in
climate and soil type. When we related the absolute rate of change in soil C in response to
eCO; to climate and soil parameters, only %clay in the fertilized sites exhibited a relationship,
with marginal significance (P = 0.08, Table 27.3). Soil C sequestration in response to eCO,
tended to decrease with increased clay content (Figure 27.2). Although only marginally
significant, this result is remarkable (and any marginal or significant relationships discussed
further on) given that all these studies were done using different methods under a variety of
conditions. A possible explanation for the decrease in soil C sequestration with increased clay
content in response to eCO; is that rhizosphere priming effects on soil organic matter
decomposition under eCO;, may be stronger in more clayey soils. Rhizosphere priming, where
microbial decomposition of relative recalcitrant soil organic matter is enhanced because of
microbial stimulation by energy-rich root exudates, may increase under eCO, (Cheng, 1999),
particularly in soils with greater clay content (Dijkstra and Cheng, 2007). Thus, an eCO;-
induced increase in rhizosphere priming in more clayey soils may result in less C sequestra-
tion, or even cause a net loss of soil C as was observed in the silty clay loam in Illinois, U.S.
(Peralta and Wander, 2008).

THE EFFECT OF eCO2> ON SOIL RESPIRATION

Soil respiration increased with eCO; in 12 of the 13 studies reviewed (Figure 27.3). A decrease
in soil respiration under eCO; was observed in a study with rye grass in Switzerland (Ineson
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TABLE 27.3 Summary of Regression Analyses Explaining Variation in Soil C,

Soil Respiration, N;O Emission and CH4 Exchange in Response to eCO,

A. Soil C
All sites Fertilized sites Non-fertilized sites
n* Corr. C. P n Corr. C. P n Corr. C. P
MAT 19 0.26 0.26 11 0.22 0.51 8 0.30 0.46
MAP 20 0.28 0.23 11 0.12 0.73 9 0.36 0.34
pH 20 -0.21 0.38 1 -0.20 0.56 9 -0.18 0.65
% Clay 22 -0.19 0.39 13 —-0.51 0.08 9 0.11 0.79

B. Soil Respiration

All sites Fertilized sites
n Corr. C. P n Corr. C. P
MAT 9 0.56 0.18 6 0.29 0.60
MAP 8 0.46 0.22 5 0.15 0.80
pH 8 -0.71 0.06 5 -0.82 0.06
% Clay 10 0.71 0.03 7 0.50 0.33
C. N,O Emission
All sites Fertilized sites
n Corr. C. P n Corr. C. P
MAT 8 0.63 0.09 6 0.51 0.24
MAP 7 0.06 0.86 5 -0.16 0.85
pH 7 -0.10 0.90 5 0.36 0.50
% Clay 9 0.62 0.09 7 0.60 0.21
D. CH,; Exchange
Non-rice
n Corr. C. P
MAT 5 -0.15 0.85
MAP 4 0.66 0.32
pH 4 0.24 0.76
% Clay 5 0.87 0.07

*n: number of sites included in the regression; Corr. C.: Pearson’s correlation coefficient; P: P-value of linear regression.

et al., 1998). Because root respiration was included in all studies, it is not surprising that soil
respiration increased under eCO; in most studies. Elevated CO, generally increases plant
productivity in agroecosystems (Kimball et al., 2002), and thus the increase in soil respiration
under eCO; may largely have been driven by an increase in root production. The effect of eCO,
on soil respiration was on average 6.4 and 1.9 kg Cha~'d ™! in N fertilized and non-N
fertilized studies respectively. Again, the greater eCO, effect on soil respiration in N fertilized
studies may have been caused by an increase in root productivity and respiration that often
occurs under eCO; with N additions (Van Groenigen et al., 2006).

Of the two climate and two soil parameters that we tested, both soil pH and %clay explained
most of the variability in eCO, effects on soil respiration, although only the relationship with %
clay was significant (P = 0.03, Table 27.3). When we included both N fertilized and non-N

fertilized sites in the regression, the increase in soil respiration in response to eCO, increased
with increased clay content, explaining 45% of the variability, and decreased with increased soil
pH, explaining 48% of the variability (Figure 27.4). As was argued for the relationship between
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FIGURE 27.2
The rate of change in soil C in response to eCO, in the N fertilized studies as a function of the soil clay content. The size
of the dots indicate the weight used in the regression (i.e. bigger dots have more weight).
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clay content and eCO; effects on soil C, an increase in rhizosphere priming under eCO;, may
have resulted in larger eCO; effects on soil respiration with increased clay content. The negative
relationship with soil pH is less clear. Microbial community composition and enzyme activity
are often strongly affected by soil pH (Sinsabaugh et al., 2008; Fierer et al., 2009) that can be
altered by changes in substrate inputs (Aciego Pietri and Brookes, 2009). It is, however, unclear
to what degree the negative relationship that we observed between soil pH and soil respiration
in response to eCO, was caused by changes in microbial or plant respiration.

THE EFFECT OF eCO2 ON N2O EMISSION

Of the 8 N fertilized studies that we found, the N,O emission increased under eCO, in
6 studies. The average increase in N fertilized studies was 9.3 g N ha' d™!, while in the 3 non-
N fertilized studies eCO, had hardly any effect on N,O emission with an average decrease of
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FIGURE 27.4

The change in soil respiration in response to
eC0, as a function of (A) soil pH and (B) clay
content. The size of the dots indicate the weight
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0.5gNha~'d~! (Figure 27.5). With a global warming potential 298 times greater than CO,
(IPCC, 2007), N,O emission in N fertilized studies correspond on average to 1188 g C-CO,
equivalents ha~' d™'. This is slightly less than the average rate that we calculated for C
sequestration in the top 20 cm of the soil in N fertilized studies in response to eCO, (see
above). This suggests that, although N fertilization has the potential to increase soil C under
eCO; (Van Groenigen et al., 2006), these soil C gains can potentially be almost completely
offset by increased N,O emissions under eCO, when N fertilizer is applied.

In the N fertilized studies N,O emission in response to eCO, showed large variation between
a decrease of 0.2 gNha~'d™! in white clover in Switzerland (Baggs et al., 2003) and an
increase of 38 gN ha~' d! in rye grass at the same site in Switzerland (Ineson et al., 1998).
This large variation is to a great extent caused by the timing and frequency of measurements
after the N fertilizer application. For instance, Ineson et al. (1998) observed some of the
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highest N,O emissions ever recorded directly after N fertilizer application in grassland systems.
Because of these high rates of N,O emission, eCO; effects on N,O emissions can also be high
directly after N application (Ineson et al., 1998; Welzmiller et al., 2008). On the other hand,
Kammann et al. (2008) measured the effect of eCO; on N,O emissions during 9 years in

a temperate grassland in Germany (the longest study conducted on the effect of eCO, on N,O
emission) and observed the greatest eCO, effects during vegetative growth periods in the
summer when soil mineral N concentrations were low, while eCO, had no effect on N,O
emission directly after the N application in the spring. Regardless of the timing and frequency
of measurements in relation to N fertilizer application, the majority of N fertilized studies
showed an increase in N,O emission in response to eCO,. It has been suggested that the
increase in N,O emission under eCO, in some of these N fertilized studies was caused by an
increase in labile C substrates fueling denitrification (Ineson et al., 1998; Kammann et al.,
2008).

In contrast, no eCO; effect, or even a slight reduction in N,O emissions, was observed in the
3 non-N fertilized studies. Possibly, eCO; increased plant N uptake and reduced soil N
availability in these unfertilized systems where available soil N was already low, causing no or
reduced effects on N,O emission (Hungate et al., 1997b; Mosier et al., 2002).

Both MAT and %clay showed a positive relationship with N, O emission in response to eCO;,
although both relationships were only marginally significant (Table 27.3, Figure 27.6). N,O
emissions are highly sensitive to temperature (Grant and Pattey, 2008), which could explain
why N,O emissions respond more to eCO, in combination with higher MAT. Further, an
increase in soil moisture, because of decreased stomatal conductance under eCO, (Kimball
and Idso, 1983; Morgan et al., 2004; Wand et al., 1999), can increase anaerobic conditions in
the soil conducive to denitrification, particularly in clayey soils that have relatively more small
pores than sandy soils. These results suggest that, apart from N fertilization, MAT and soil
texture play important roles in the large variability in N,O emission in response to eCO,
among different sites.

THE EFFECT OF eCO2> ON CH; EXCHANGE

In studies with rice, eCO; resulted in large increases in CH4 emission in 3 out of 4 studies
(Figure 27.7). The average increase in CH,4 emission in rice studies in response to eCO, was
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493 gCha ' d~!. With a global warming potential 25 times greater than CO, (IPCC, 2007),
this increase in CH,4 emission corresponds to an increase of 4482 g C-CO; equivalents
ha~!d™! in response to eCO,. Evidently, rice paddy fields show some of the greatest responses
to eCO; in terms of GHG emissions (e.g. the average rate of C—CO, equivalents associated
with CH,4 emission in rice is 3.8 times higher than the average rate associated with N,O
emission in N fertilized studies).

In the rice studies, we found no relationships between MAT, MAP, soil pH, or %clay with the
rate of CH4 emission in response to eCO,. CH4 emission in rice fields is to a large degree
controlled by inputs of C substrates, and increased CH4 emission under eCO; has been
associated with increased plant residues, root productivity, and exudation (Inubushi et al.,
2003; Xu et al., 2004; Tokida et al., 2010). The increase in CH4 emission in response to eCO,
through increased inputs of C substrates may simply have overwhelmed any soil or external
climate effect. We should note that with only 4 studies, we had limited statistical power to do
the regressions.

In most non-rice studies, soil is a net sink for CHy, where it is oxidized by methanotrophic
bacteria [an exception was the study by Smith et al. (2010) where soil was sometimes a CHy
source in a sorghum—soybean rotation]. The effect of eCO, on CH4 fluxes (where we used the
same convention as in the rice studies, i.e. a positive flux indicates CH4 emission, while

a negative flux indicates CH4 uptake) was mixed where both increases and decreases were
observed with an average increase of 1.1 gCha ™' d ! among the 5 studies we evaluated (or on
average a reduction in CH4 uptake in response to eCO; because in most studies there was an
overall net CH,4 uptake; Figure 27.7). The reduced transpiration and consequent higher soil
water content that often occurs under eCO; can have opposite effects on CH, fluxes depending
on whether methanotroph activity is limited by soil moisture (in most arid and semiarid
environments) or by CHy diffusivity into the soil (in most mesic environments; Dijkstra et al.,
2011). Note that responses of CH, fluxes to eCO; in non-rice or dry land systems are orders of
magnitude smaller than in rice systems. Nevertheless, because a much larger proportion of the
global area is covered by dry land systems than by rice paddy fields, small changes in CH,
fluxes in dry land systems can still have a significant impact on the global CH,4 flux (Mosier
etal, 1991).
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As with the greenhouse gases CO, and N,0O, the CHy flux in response to eCO, was positively
related to the clay content of the soil, explaining 73% of the variation (Table 27.3, Figure 27.8).
Soil texture should influence CH, fluxes to the extent that methanotroph activity is limited by
soil moisture or by CHy diffusivity. Since sandy soils have better aeration than clayey soils, CH,4
uptake is more likely to be limited by direct effects of soil moisture on methanotroph activity
than by CH, diffusivity. Thus, a CO;-induced increase in soil moisture would tend to increase
CH, uptake (thus decrease the CHy flux in response to eCO;) more in sandy soils (e.g. as
observed by Mosier et al., 2002, in a sandy loam with only 10% clay). On the other hand, in
clayey soils with poorer aeration, CH,4 uptake is more likely to be limited by CH, diffusivity,
and a CO-induced increase in soil moisture might therefore decrease CH,4 uptake (or increase
the CO, response) as observed in a clay loam by Lam et al. (2011). The positive relationship of
CH, fluxes with clay content is based on only five observations, and it remains to be seen if this
relationship will hold with more observations.

WARMING EFFECTS ON SOIL C, SOIL RESPIRATION,
N2O0 EMISSION AND CH; EXCHANGE

Little work has been done on the effects of warming on soil C sequestration and GHG fluxes in
agroecosystems. We found only two published studies (Luo et al., 2009; Pendall et al., 2011)
and one unpublished study (northern mixed grass prairie in Wyoming, U.S.), all in non-N
fertilized grassland systems, reporting warming effects on soil C. Results are not consistent
among those three studies, with an average decrease in soil C by 0.026 g C kg™ ! soil yr™*
(Figure 27.9A). The effect of warming on soil C in all three studies is relatively small compared
to the effect of eCO;, in many studies (Figure 27.1). It is noteworthy that warming induced C
loss only in Wyoming northern mixed-grass prairie, the driest of these three grasslands.
Although warming has the potential to enhance biological activity and extend the length of
growing season, it also desiccates, and in dry grasslands, such desiccation can lead to C loss
(Zhang et al., 2010).

A little more work has been done evaluating the effects of warming on soil respiration, with
more consistent results. In 6 of 7 studies, soil respiration increased with warming

(Figure 27.9B). The exception was a study with ryegrass in France, where no change in soil
respiration was observed (Casella and Soussana, 1997). On average soil respiration increased
more in N fertilized (6.8 kgCha ' d!) than in non-N fertilized studies (4.4 kgCha'd ™),
although the highest increase was observed in a non-N fertilized study (Briones et al., 2009).
Warming often leads to increased rates of SOM decomposition, and likely led to increased soil
respiration (Rustad et al., 2001), particularly when N is not limited. We related soil respiration
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The change in CH, exchange in response to eCO, in non-rice
studies as a function of soil clay content. The size of the dots
indicate the weight used in the regression (i.e. bigger dots have
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rates in response to warming to climate and soil parameters, but observed no significant
relationships (data not shown).

Little information is available on how warming affects N,O and CH, fluxes. In the only

N fertilized study we found, the N,O emission decreased in response to warming (Kamp et al.,
1998), while in the two non-N fertilized studies warming had very little effect on N,O
emission (Hu et al., 2010, and unpublished results from northern mixed grassland, Wyoming,
u.S., Figure 27.10A). Warming had mixed effects on CH4 emission in rice paddy fields where
both decreased (Ziska et al., 1998) and increased emission rates (Tokida et al., 2010) were
reported (Figure 27.10B). The only non-rice study conducted in a semiarid grassland showed
that warming decreased CH, uptake (Figure 27.10C). It was argued that in this semiarid
climate, methanotroph activity was mostly directly limited by a soil moisture and that the
drying effect of warming therefore directly reduced methanotroph activity (Dijkstra et al.,
2011). Because of the limited number of studies, we did not perform regressions with climate
and soil parameters.

INTERACTIVE eCO, x WARMING EFFECTS ON SOIL C, SOIL
RESPIRATION, N2>O EMISSION, AND CH; EXCHANGE

Few studies included both atmospheric CO, and temperature manipulations (Ziska et al.,
1998; Schrope et al., 1999; Tokida et al., 2010; Dijkstra et al., 2011; Pendall et al., 2011). In only
two studies were CO, x warming interactive effects on soil C investigated, both in non-N
fertilized grassland systems. In both studies, soil C under eCO; decreased more in combina-
tion with warming than without warming (Table 27.4). In the northern mixed grassland soil
respiration under eCO, also increased in combination with warming but slightly decreased
without warming. These results suggest that eCO, effects on SOM decomposition rates may
accelerate with increased temperature. However, we found little evidence for CO, x warming
interactions on soil C from our regressions with MAT. Despite the relatively large numbers of
studies included in this regression (19 studies, Table 27.3), we observed no significant rela-
tionship between soil C in response to eCO, and MAT, suggesting that eCO, effects on soil C
sequestration did not depend on the temperature regime that the experiment was conducted
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TABLE 27.4 Interactive Effects of eCO, and Warming on Soil C, Soil Respiration, N,O

Emission, and Ch, Exchange

Agroecosystem

eCO, effect (% change from aCO,)

Low temperature

High temperature

Reference

Soil C—Non-fertilized

Temperate grass AU 12.5 -3.4 Pendall et al. 2011
Northern mixed grass WY —2.8 —141 Unpublished results
Respiration—Non-fertilized

Northern mixed grass WY —-2.0 13.6 Unpublished results
N>O—Non-fertilized

Northern mixed grass WY —-94.9 —21.6 Unpublished results
CH,—Rice

Rice FL —84.2 —-90.0 Schrope et al. 1999
Rice JA 22.1 291 Tokida et al. 2010
Rice PH 48.3 214.5 Ziska et al. 1998
CH,—Non-rice

Northern mixed grass WY 0.1 5.0 Dijkstra et al. 2011

Unpublished results
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in. Although studies were done at locations that occupied a relatively large range of MAT
between 7.5 and 21.1°C, we note that reported MAT values do not always reflect the actual
temperature that occurred during the time-frame of the experiment. This may have contributed
to finding no significant relationship with eCO, effects on soil C.

Only N,O emission in response to eCO; showed a marginally significant relationship with
MAT (Figure 27.6), suggesting a CO, x temperature interactive effect where eCO, effects are
stronger with increased temperature. In the non-N fertilized northern mixed grassland study in
Wyoming, the N,O emission under eCO, decreased less with warming than without warming
(Table 27.4). These results suggest that CO, x warming interactive effects may be important
for N,O emissions.

The increase in CHy4 emission under eCO, was much greater in combination with warming
than without warming in a study with rice in the Philippines (Ziska et al., 1998), but no
CO;, x warming interactive effects on CH, exchange were observed in three other studies
(Table 27.4). Clearly, more research is needed to identify clear patterns of eCO, x warming
interactive effects on soil C sequestration and GHG emissions.

CONCLUSIONS

We reviewed studies conducted in agroecosystems to determine sensitivity of C cycling and
GHG emissions to the effects of eCO, and warming. We found that eCO, had the potential to
increase soil C, particularly in combination with N fertilization. Similar results were found in
other reviews (Reich et al., 2006b; Van Groenigen et al., 2006; Hungate et al., 2009). However,
we also found that the increase in soil C in combination with N fertilization did not come
without a price. N,O emissions also increased under eCO; with N fertilization, and indeed on
average the CO5-induced increase in N,O emission in terms of its Global Warming Potential
almost completely offset the average increase in soil C in N fertilized studies. Thus, particularly
in N fertilized agroecosystems, one can come to the wrong conclusion about the effect of eCO,
on the GHG balance expressed in CO, equivalents if N,O emissions are not accounted for.
A similar conclusion was reached by van Groenigen et al. (2011), who estimated that the
Global Warming Potential caused by a CO;-induced increase in N,O and CH,4 emission in
agricultural and non-agricultural lands could offset as much as 16.6% of the global increase in
terrestrial C storage in response to eCO, by 2050.

Research is needed to determine whether or not practices like precision application of N
fertilizers or use of nitrification inhibitors can be used to minimize N,O emission but that can
help capitalize on the potential for rising CO; to enhance C sequestration. Legumes have been
suggested as a possible remedy to the N-limitation problem of plants exposed to eCO, (van
Groenigen et al., 2006) and legumes tend to respond positively to eCO, (Newton et al., 1994;
Teyssonneyre et al., 2002). However, lack of a significant positive effect of CO, on C seques-
tration in pastures with legumes (Ross et al., 2004; van Kessel et al., 2006) suggests that simply
enhanced N fixation under increasingly higher CO, concentrations may not necessarily lead to
greater C sequestration. More research is needed to evaluate how and under what conditions
various mixtures of legumes and forage grasses in combination with non-N fertilization
practices might lead to increased C sequestration under future CO,-enriched atmospheres.
Such research should consider appropriate combinations of legumes and non-legumes whose
morphology and development might optimize the capture and cycling of N so as to minimize
the release of N,O.

We found that soil clay content is an important factor in explaining the large variability in
GHG exchange among sites in response to eCO,. We observed marginally significant to
significant positive relationships between %clay and all three GHGs in response to eCO,. Our
results suggest that GHG exchange from clayey soils is more sensitive to eCO; than from sandy
soils. The relationships we found between %clay and GHG exchange should be explored
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further to better understand the mechanisms involved and how widely applicable this rela-
tionship might be to scale up the effect of eCO, on GHG exchange in agroecosystems to
regional or even global levels.

More research is needed about warming effects on soil C sequestration and GHG exchange.
The limited studies that we found from agroecosystems often showed mixed warming effects,
and no clear strong patterns emerged on how soil C and GHG exchange is affected by warming.
Similarly, it remains unclear what the interactive effects of eCO, and warming are on soil C
sequestration and GHG exchange in agroecosystems. While important challenges remain for
agriculture to identify systems and practices that can mitigate global warming, future research
with the objective to enhance C sequestration and mitigate GHG emissions will need to
remain vigilant as climate change continues to increase in coming decades.
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